Related Questions with Solutions

Questions

Quetion: 01

If (- 4, 3) and (12, -1) are the ends of diameter of a circle which makes an intercept of 2 λ on the y-axis, then λ is A. $\sqrt{13}$

B. $4\sqrt{13}$

C. $3\sqrt{13}$

D. $2\sqrt{13}$

Quetion: 02

The parametric equations of the circle $x^2 + y^2 + x + \sqrt{3}y = 0$ are

A	$x = 1 + \cos \theta, y = \frac{\sqrt{3}}{2} + \sin \theta$
В	$x = -\frac{1}{2} + \cos\theta, y = -\frac{\sqrt{3}}{2} + \sin\theta$
С	$x = \frac{1}{2} + \cos\theta, y = -\frac{\sqrt{3}}{2} + \sin\theta$
D	$x = \frac{1}{2} + \frac{1}{2}\cos\theta, y = \frac{\sqrt{3}}{2} + \frac{1}{2}\sin\theta$

Quetion: 03

If a circle C, whose radius is 3, touches externally the circle, $x^2 + y^2 + 2x - 4y - 4 = 0$ at the point (2, 2), then the length of the intercept cut by this circle C, on the x-axis is equal to : A. $2\sqrt{3}$

B. $3\sqrt{2}$

C.
$$\sqrt{5}$$

D. $2\sqrt{5}$

Quetion: 04

If the curve $x^2 + y^2 - 2x - 2y + 1 = 0$ intersects or touches the co-ordinate axes at A and B, then equation of straight line joining A and B is A. $x + y = \sqrt{2}$

B. x + y = 1C. x - y = 1D. $x - y = \sqrt{2}$

Quetion: 05

The equation of two circles which touch the *y*-axis at (0, 3) and make an intercept of 8 units on *x*-axis are

A. $x^{2} + y^{2} \pm 10x - 6y + 9 = 0$ B. $x^{2} + y^{2} \pm 6x - 10y + 9 = 0$ C. $x^{2} + y^{2} - 8x \pm 10y + 9 = 0$ D. $x^{2} + y^{2} + 10x \pm 6y + 9 = 0$

Quetion: 06

The length of the chord of the circle $x^2 + y^2 + 3x + 2y - 8 = 0$ intercepted by the y-

Solutions

Solution: 01

The circle is [x + 4] [x - 12] + [y - 3] [y + 1] = 0Also, $x = 0 \Rightarrow y^2 - 2y - 51 = 0$ y intercept $= 2\sqrt{(1)^2 - (-51)}$ $\left(\because y - intercept = 2\sqrt{f^2 - c}\right)$ $= 2\sqrt{52} = 4\sqrt{13}$ $\Rightarrow 2\lambda = 4\sqrt{13} \Rightarrow \lambda = 2\sqrt{13}$

Solution: 02

For a circle of the form, $(x - \alpha)^2 + (y - \beta)^2 = r^2$, the parametric equation of the circle is, $x = \alpha + r \cos \theta$, $y = \beta + r \sin \theta$ $x^2 + y^2 + x + \sqrt{3}y = 0$ has centre at $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and radius $= \sqrt{\frac{1}{4} + \frac{3}{4} - 0} = 1$ So, the parametric equations are, $x = -\frac{1}{2} + \cos \theta$, $y = -\frac{\sqrt{3}}{2} + \sin \theta$

Solution: 03

Centre of circle $x^2 + y^2 + 2x - 4y - 4 = 0$ is (-1, 2) and radius $= \sqrt{1 + 4 + 4} = 3$ Let [h, k] be the centre of another circle.

Now,
$$\frac{h-1}{2} = 2$$
 and $\frac{k+2}{2} = 2$
 $\Rightarrow h = 4 + 1 = 5$ and $k = 4 - 2 = 2$
So, centre of required circle is [5, 2] and radius = 3.
 \therefore Equation of circle becomes $(x - 5)^2 + (y - 2)^2 = (3)^2$
 $\Rightarrow x^2 + y^2 - 10x - 4y + 20 = 0$ [i]
Length of intercept made by [i] on x-axis
 $= 2\sqrt{g^2 - c} = 2\sqrt{25 - 20}$
 $(\because g = -5, c = 20)$
 $= 2\sqrt{5}$

Solution: 04

Given curve is $x^2 + y^2 - 2x - 2y + 1 = 0$ $\Rightarrow (x-1)^2 + (y-1)^2 = 1^2$ Above equation is the equation of circle, centre at [1, 1] and radius 1. \therefore Coordinates of A and B are (1,0) and (0,1) respectively. \therefore Equation of AB is $y - 0 = \frac{1-0}{0-1}(x-1)$ $\Rightarrow -y = x - 1 \Rightarrow x + y = 1$

Solution: 05

So, centre of circle is [5, 3] Similarly, if circle lies in left of *y*-axis its centre is [-5, 3] \therefore Equation of circle of centre (5,3) and radius 5 is $(x-5)^2 + (y-3)^2 = 5^2$ $\Rightarrow x^2 + y^2 - 10x - 6y + 9 = 0$ and equation of circle of centre (-5,3) and radius 5 is $(x+5)^2 + (y-3)^2 = 5^2$ $\Rightarrow x^2 + y^2 + 10x - 6y + 9 = 0$ Hence, equation of circle are $x^2 + y^2 \pm 10x - 6y + 9 = 0$

Solution: 06

We have, $x^2 + y^2 + 3x + 2y - 8 = 0$ Here, $g = \frac{3}{2}$, f = 1, c = -8Length of intercept made by y-axis $= 2\sqrt{f^2 - c} = 2\sqrt{(1) + 8} = 6$

Correct Options

Answer:01 Correct Options: D Answer:02 Correct Options: B Answer:03 Correct Options: D Answer:04 Correct Options: B Answer:05 Correct Options: A Answer:06 Correct Answer: 6